A q-summation formula, the continuous q-Hahn polynomials and the big q-Jacobi polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Limit from q-Racah Polynomials to Big q-Jacobi Polynomials

A limit formula from q-Racah polynomials to big q-Jacobi polynomials is given which can be considered as a limit formula for orthogonal polynomials. This is extended to a multi-parameter limit with 3 parameters, also involving (q-)Hahn polynomials, little q-Jacobi polynomials and Jacobi polynomials. Also the limits from Askey–Wilson to Wilson polynomials and from q-Racah to Racah polynomials ar...

متن کامل

Structure relations for the bivariate big q-Jacobi polynomials

The bivariate big q-Jacobi polynomials are defined by [3] Pn,k(x, y; a, b, c, d; q) := Pn−k(y; a, bcq , dq; q) y(dq/y; q)k Pk (x/y; c, b, d/y; q) (n ≥ 0; k = 0, 1, . . . , n), where q ∈ (0, 1), 0 < aq, bq, cq < 1, d < 0, and Pm(t;α, β, γ; q) are univariate big q-Jacobi polynomials, Pm(t;α, β, γ; q) := 3φ2 ( q−m, αβq, t αq, γq ∣∣∣∣ q; q) (m ≥ 0) (see, e.g., [1, Section 7.3]). We give structure r...

متن کامل

Two-variable orthogonal polynomials of big q-Jacobi type

A four-parameter family of orthogonal polynomials in two variables is defined by Pn,k(x, y; a, b, c, d; q) :=Pn−k(y; a, bcq , dq; q) y(dq/y; q)k Pk (x/y; c, b, d/y; q) (n ∈ N; k = 0, 1, . . . , n), where q ∈ (0, 1), 0 < aq, bq, cq < 1, d < 0, and Pm(t;α, β, γ; q) are univariate big q-Jacobi polynomials, Pm(t;α, β, γ; q) := 3φ2 ( q−m, αβq, t αq, γq ∣∣∣∣ q; q) (m ≥ 0) (see, e.g., [1, Section 7.3]...

متن کامل

A second addition formula for continuous q-ultraspherical polynomials

This paper provides the details of Remark 5.4 in the author’s paper “Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group”, SIAM J. Math. Anal. 24 (1993), 795–813. In formula (5.9) of the 1993 paper a two-parameter class of Askey-Wilson polynomials was expanded as a finite Fourier series with a product of two 3phi2’s as Fourier coefficients. The proof given there use...

متن کامل

Modified Bernstein Polynomials and Jacobi Polynomials in q-Calculus

We introduce here a generalization of the modified Bernstein polynomials for Jacobi weights using the q-Bernstein basis proposed by G.M. Phillips to generalize classical Bernstein Polynomials. The function is evaluated at points which are in geometric progression in ]0, 1[. Numerous properties of the modified Bernstein Polynomials are extended to their q-analogues: simultaneous approximation, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2014.05.047